Analysis of the Basic Infrastructures Affecting Child Labour in North-Eastern Nigeria

Ibrahim, Musa1†; Sule, Magaji1†; Tsauni, M. Ahmed2†

1 Department of Economics, University of Abuja, Nigeria.
2 Department of Economics, Bayero University, Kano, Nigeria.
† Authors contributed equally
* Corresponding Author: ibrahim.musa@uniabuja.edu.ng

Abstract

This study examines the basic infrastructures affecting child labour in North-Eastern Nigeria. The study employed multistage sampling techniques to obtain data from selected local government areas in three states of North Eastern Nigeria. Structured questionnaires were administered to 810 children and their household heads in three wards of each local government area selected. The data obtained were analysed using the Tobit Model. The results show that access to electricity has no significant effect on children engaging in work. This implies that access to electricity has no significant contribution or effect on determining the probability of children engaging in child labour. In addition, access to clean pipe borne water has no significant effect on children engaging in work. But the distance of school from households in kilometers has a significant positive effect on children engaged in work. However, the distance between hospitals and households in kilometers has no significant effect on children engaging in work, and the increase in the distance between hospitals from households in kilometers has the potential to reduce the probability of children engaging in work. Therefore, the study recommends necessary actions such as adequate provision for basic infrastructure.

Key words: Child labour, basic infrastructure, School, Library, Universities, Hospitals
JEL Classification: J22

1. Introduction

Despite vigorous campaigns and efforts to eliminate child labour, a 2018 report by the International Labour Organization (ILO) estimates that there are still about 168 million child labourers in the world, accounting for almost 11 percent of the total child population, ILO (2017). According to ILO (2018), about half of these child labourers (approximately 85 million) are engaged in hazardous work that directly endangers their health, safety, and moral development. Since most of the children work in agriculture, services, and industry sectors, the role of non-state actors such as farmers, families, and businesses become critical in dealing with the problem of child labour. The prevalence of child labour is highest in Sub-Saharan Africa. In the least developed countries, one in four children (ages 5 to 17) is engaged in labour that is considered detrimental to their health and development (ILO, 2018).

As observed by Aluko & Magaji (2020), there is stagflation and poverty incidence in the West African subregion. This is a fertile ground for child labour. According to Shaba, Obansa & Magaji (2008), there is pervasive poverty in Nigeria and income inequality positively correlates with poverty. Considering regional characteristics, over 89% of children in the southern regions of Nigeria attend school, compared with 74% in
the northern regions (NBS, 2021). This shows that more children in the North are educationally disadvantaged compared to those in the South. Poverty is a major determinant of child labour in Northern Nigeria as more than 70% of the population in the area is poor (Magaji, 2007). Furthermore, the literacy level is low in the region and therefore parents who were labourers at childhood have high tendency to send their children into child labour market (Magaji, 2008). This is more so with the fact that there is high demand for cheap child labour relative to adult labour and there is insecurity, dislocation and lack of proactive measures by government (Adeoti, 2021). Beside the traditional causes of child labour, access to basic infrastructures such as schools, hospitals, pipe borne water and electricity are likely to have influence. The aspect of infrastructure and child labour is scarcely investigated in Northern Nigeria.

Therefore, this study tries to find out how the lack of these basic infrastructure influences child labour.

2.0 Literature Review and Theoretical Framework

2.1 Concept of Child Labour

International Labour Organization (ILO, 2017) defines Child-labour as any work or task a child below the age of 18 years undertakes with a view to being rewarded in cash or kind or for any other reason at all, and which deprives him of good health, good education, and normal development. It is child labour because the children who do the labour are below the appropriate legally minimum working age (18 years) based on the International Labour Organization (ILO) minimum age convention of 1973, Number 138 (1). Magaji (2007) sees child labour as work done by children on an economical basis; it’s hazardous in nature, coupled with high exploitation tendencies. Several studies viewed child labour as the dangerous nature of jobs undertaken by children, which causes damage to their health.

International Labour Organization (ILO, 2017) defines Child-labour as any work or task a child below the age of 18 years undertakes with a view to being rewarded in cash or kind or for any other reason at all, and which deprives him of good health, good education and normal development. It is child labour because the children who do the labour are below the appropriate legally minimum working age (18 years) based on the International Labour Organization (ILO) minimum age convention of 1973, Number 138 (1). Magaji (2007) sees child labour as work done by children on an economical basis; it’s hazardous in nature, coupled with high exploitation tendencies. Several studies viewed child labour as the dangerous nature of jobs undertaken by children, which causes damage to their health. Child labour entails any work that retards a child’s physical and mental development, (ILO, 2012). According to the International Labour Organization (ILO) (2012), child labour affects 215 million minors worldwide.

Moyi (2011) sees child labour as a means of exploitation, as it is characterized by low wages and long hours of physical work. This kind of labour tends to be exploitative, as it is not offered maturely. Magaji (2008) opined that not all work can harm or be considered exploitative as it depends on the particular work setting and the number of hours allocated as well as the working environment. This can, therefore, be absorbed by age, as seen in many societies where people cease to be children at different ages (Bilal, 2013). However, child labour is considered a good task in Africa and Asia as children do have the ability to learn skills (Mackintosh & Wori, 2021). To this end, Adegun (2013) views child labour from a social perspective as the integration of children into different roles in society, as it guides them to their potential roles as they mature. UNICEF (2011) defines child labour as work that exceeds a minimum number of hours, depending on the age of a child and the type of work. For children aged 5 to 11, this would include at least one hour of economic work and 28 hours of domestic work per week. For the 12 to 14 age group, this would include at least 14 hours of economic work or 28 hours of domestic work per week.

We, therefore, see child labour as work a child below the age of 18 engages in to get income or immediate benefits at the expense of his or her human capital development.

2.2 Basic Infrastructure:

Olaseni & Alade (2012) see infrastructure as an umbrella term for many activities, usually referred to as “social overhead capital” by developed economists. Infrastructure enables the geographic concentration of economic resources and provides a wider and deeper market for output and employment (Macdonald, 2009). According to Fourie (2006), infrastructure can be classified into economic and social infrastructure. Economic infrastructure is defined as infrastructure that promotes economic activity, such as roads, highways, markets, airports, seaports, and electricity. Social infrastructure comprises schools, libraries, universities, clinics, hospitals, courts, museums, theatres, playgrounds, parks, fountains, and statues.

Infrastructure is generally defined as the set of interconnected structural elements that provide a framework supporting an entire structure of development. It is an important term for judging a country or region’s development (Nurre, 2012). Owwoaje, Ige & Bamgboye, (2011) sought to clarify the situation by adopting the term “public works infrastructure” referring to both specific functional modes such as highways, streets, roads, and
bridges: mass transit; airports, and airways; water supply and water resources; wastewater management; solid waste treatment and disposal; electric power generation and transmission; telecommunications; and hazardous waste management.

Our study views basic infrastructure like schools, hospitals, electricity, and clean pipe-borne water because they are the basics. According to UNICEF (2020), a sample girl spends about eight hours a day fetching water. The availability of pipe-borne water could have reduced this activity. In the work of Humphrey, DeGraft & Dungumaro (2018), 37-40% of children sampled in Tanzania trek to gather wood. The availability of electricity infrastructure could have lessened this burden on the children. Stephen and Oduaran (2021) found a lack of schools as the major cause of child labour. According to Mandy & Allison (2019), there is a link between school attendance and good health. Accordingly, the availability of health infrastructure could have been a boost to children's school establishment in North-Eastern Nigeria. The need to access how these basic infrastructures affect child labour in North-Eastern Nigeria constitutes a problem of this research.

2.3 Functionalist theory

Durkheim (1858–1917) is most closely associated with functionalism since he often employs analogies with biology. The most prominent is his organic analogy, in which society is seen as an organic whole with each of its constituent parts working to maintain the others, just as parts of the body also work to maintain each other. This idea is basic to his concept of organic solidarity, and he distinguished between functional and historical explanations and recognized the need for both (Kenneth, 2005). To Durkheim, a functional explanation accounts for the existence of a phenomenon or the carrying out of an action in terms of its consequences and contributes to maintaining a stable social whole (Kenneth, 2005).

Similarly, religious institutions serve to generate and maintain social solidarity. Historical explanations are on account of the chronological development of the same phenomenon or actions. A new form of modified functionalism is now undergoing a revival in studying societies; these modern functionalisms are usually associated with the works of Merton (1936). Merton's work distinguishes between manifest functions (intended consequences, of which the participants are unaware) and hidden functions. To the functionalist theorists, societies and individuals exist and work to sustain each other organically. The Functionalist views each part of society as performing a function that keeps and sustains the entire society. That failure in the performance of one result in a breakdown of the entire society. This implies that every part (no matter how small) has a vital role to play if the sustenance and unity of the whole are desired.

Child labour may, therefore, result from the inability of the society to function well by not being able to provide for the poor families the adequate socialization, education, incentives, responsiveness to human problems, equality of access to the resources and opportunities, infrastructure as well as the necessities and provisions needed for a decent or optimal standard of living. However, infrastructural development may not reduce but increase child labour. For instance, Eke, Magaji & Ezegwe (2020) opine that the development of telecommunication services causes mass adult unemployment and low family income. These are key indices of child labour. Ismaila, Musa & Magaji (2019) show that a lack of compliance to low promotes deforestation despite alternative energy. However, the empirical literature on child labour and basic infrastructure is relatively scarce but in support of the view that lack of basic infrastructure promotes child labour.

2.4 Empirical Review:

Atella & Rossi (2010) used data from simple two-period models relating to child labour, child school attendance, and child health care access in less developed countries and found that child labour is positively correlated with access to health care services. The result shows that the higher the medical expenditure, the better health is generated and, therefore, higher child school attendance and productivity. This study assesses the basic infrastructure affecting child labour in northern Nigeria. The study was built upon extant literature. It assesses child labour and access to clean pipe-borne water and electricity, schools, and hospitals in North-Eastern Nigeria. It furthers the functionalist theory. To the best of their knowledge, basic infrastructure’s influence on child labour in the region is not yet empirically researched.

Humphrey, DeGraft & Dungumaro (2018) using cross-sectional data analysis in Tanzania found that more than 75 percent of the children spend seven days fetching water and 37-40 percent of the sample children participate in the gathering of woods. Also, 35 percent of the sample children participate in the two environmental chores: fetching water and wood gathering. Komarulzaman, DeJong & Smits (2019) used paid data for 295 districts over a period of ten years and found that districts, where more households have access to private water facilities, have higher school enrolment and lower school absenteeism.

Stephen & Oduaran (2021) examine the experiences of children who were supposed to be in school but were observed working in the informal market space in Africa. Qualitative data was collected through referral and non-discriminative snowballing. Forty-eight participants from Aleshinloye and Bodija markets in Southwest Nigeria were included in the study. The Results show that Parental poverty, poor education facilities, peer influence,
and the frequent strike by education institutions (pretertiary and tertiary) constitute 85.6% of the reasons why child labour is so prevalent in informal market space in south-western Nigeria. However, they focused only on one basic infrastructure, and that is education.

Adeoye, Agbonlahor,ashaolu & Ugalahi (2017) in their study state that the prevalence of child labour in the agricultural sector has been widely reported. The study aims at understanding the cause of child labour among rural farmers in Nigeria. A multistage sampling technique was used to select 128 rural households for the survey. A total of 352 children (5 – 17 years) were interviewed. The results showed that the average of children is 10 years and many of these children (67.3%) are reported to be living with their biological parents. The findings of the study indicate that distance from home to school, absence of roads, and proximity of the household to major roads were identified as some of the major causes of child labour. The study concluded that rural infrastructural development and household economic empowerment are central to child labour reduction strategy.

Abou (2019) highlights the effect of school quality on child labour in the Ivory Coast. His survey interviewed 750 households of 1,338 children aged 6 – 14 years. He used Heckman’s selection model and found that the availability of school infrastructure and electricity in schools reduces the number of hours and the likelihood of child labour regardless of sex. He suggested that policymakers should intensify the effective fight against child labour and should improve the learning environment for children through the provision of infrastructure.

Mehan & Todesse (2020) try to determine the factors influencing child labour in Ethiopia. Their study focused on children aged between 5 – 14 years using the 2020 Ethiopian National Labour Force Survey cross-sectional dataset. Descriptive statistics and binary logistic regression analysis were used. The findings of their result reveal that region of residence was among the major factors influencing child labour. The region of residence differs in infrastructural facilities. Therefore, they recommended that there is a need for enforcement of laws and concrete intervention.

Magaji & Musa (2015) in their study Impact of household income on child labour in Abuja, used Tobit Model to regress data collected from 300 households and found out that apart from household income, basic infrastructures also influence child labour notably among them is non-availability of schools in communities and also lack of good roads for easy transportation. Therefore, they recommended that government at all levels should make adequate provisions for these basic infrastructures to curtail this rising level of child labour.

Ojo, Olorunyii, Osogbale & Ojo (2018) conducted an assessment of child labour in selected municipal farmers in Niger state, Nigeria. In this study, they used a structured questionnaire to obtain primary data from 103 randomly selected farmers from two local governments. The survey used descriptive statistics to explain the activities and dangers faced by children engaged in agriculture in the study area. The study used a binary logit regression model to analyze the factors that influence the use of child labour by rural farmers in the study area. The survey showed that the main activity of children in the survey area was a combination of school attendance and farm work. The study also found that the age of the head of household and the number of male children increased the likelihood that children would be involved in child labour.

Oladokun, Dada, Agulanna & Adenegan (2020) investigated the determinants of child labour in Nigerian farmers. The determinants of child labour were investigated using data from 765 rural Nigerian households in the General Household Survey (GHS 2015/2016). The data were decomposed into six geopolitical zones in Nigeria (North Central, Northwest, Northeast, Southeast, South South, Southwest). Information on socio-economic characteristics [age, household size, marital status, years of education, and co-operative membership] and the use of child labour was extracted for analysis, using descriptive statistics and logit regression at α0.05. The study concludes that work is detrimental to the well-being of children.

Ifeanyichukwu, Ike & Nnadozie (2018) investigate the determinants of child labour in rural tillers in Anambra, Nigeria. The study used a multi-level random sampling technique to select 100 respondents to be surveyed and used a structured survey to collect information from respondents. Percentage responses were used to capture the objective of the study using probit model analysis. The results show that the majority of respondents are married, have young, medium-sized households, and have extensive agricultural experience. The determinants of child labour in rural households were the relationship between the child and the head of the household, access to basic infrastructure, and the level of education. The main work done by the children in the study area was bird scarier, fertilizer application and planting.

Based on the empirical literatures above, it is therefore the objective of this study to empirically assess how basic infrastructure affects child labour in the area. The rest of this paper is structured as follows: method, Empirical Results, Discussion, Conclusion, and recommendations.
3.0 METHODOLOGY

3.1 Research Framework

The study was primarily conducted based on an analysis of the basic infrastructure affecting child labour in North-Eastern Nigeria. It comprises six states, namely, Adamawa, Bauchi, Borno, Gombe, Taraba, and Yobe. North-Eastern State is a former administrative division of Nigeria. It was created on May 27, 1967, from parts of the Northern Region. Its capital was the city of Maiduguri. The North-Eastern is also full of agriculture and food. On February 3, 1976, the state was divided into Bauchi, Borno, and Gongola states. Gombe State was later split out of Bauchi, Yobe State from Borno, and Gongola was split into Taraba State and Adamawa State. It has a land mass of two hundred and seventy-two, three hundred and ninety-five square kilometers (272,395 km²). According to the Population Census, it has a population of nineteen million, nine hundred and eighty-three thousand and seventy-five (19,983,875). The respective federal states and their populations according to the National Population Census (2006) are as follows: Adamawa, four million, one hundred and seventy-seven thousand, eight hundred and twenty-eight (4,177,828); Bauchi, four million, six hundred and fifty-three thousand, sixty-six (4,653,066); Borno, four million, one hundred and seventy-one thousand, three hundred and sixty-three (4,171,363); and Yobe, two million, thirty-three thousand and two hundred thousand, three hundred and thirty-nine (2,321,339).

The data on basic infrastructure affecting child labour was collected from nine local government areas of Adamawa, Bauchi, and Yobe States of North-Eastern Nigeria. This is because of the high prevalence rate of child labour and predisposing factors that could determine child labour in each of the states. Data is collected from three local government areas (all urban areas) of each state. In each state, one local government area was selected from each senatorial district. The study employed the use of multi-stage sampling techniques. The local government areas were selected based on the senatorial districts in each state. In each state, three local government areas were selected based on their senatorial districts, and three wards were selected from each local government area. Based on the questionnaires administered, eight hundred and ten children and their household heads were sampled, and thirty household heads were sampled in each ward. The sampling criteria used were that thirty houses were counted between one household and the next household. In Adamawa, the Numan Local Government Area was selected from the Adamawa South Senatorial district; Mubi from the Adamawa North Senatorial district, and Yola from the Adamawa Central Senatorial district. In Bauchi, the Local Government Area of Bauchi was selected from the Senatorial district of Southern Bauchi, Misau Local Government Area was selected from the Senatorial District of Central Bauchi, and the Local Government Area of Giade was selected from the Senatorial district of Bauchi North. In Yobe, the Damaturu Local Government Area was selected from the Zone A Senatorial District, Potiskum Local Government Area from the Zone B Senatorial District, and the Gashua Local Government Area from the Zone C Senatorial District. In each local government area, ninety questionnaires were administered and received. In each local government area, three wards were identified with thirty households (Field Survey, 2021).

3.2 Estimation Model

Based on the literature, on basic infrastructures which comprise the distance of the school from home, the distance of schools from hospitals, access to clean pipe-borne water, and access to electricity in the study. Also, Enayatollah, Hanie & Ebrahim (2015), in their research titled "Child-labour and their Influencing Factors: Evidence from Less Developed Provinces of Iran", used the Tobit Regression Model. This study also adopted the same model as below.

\[Chlb = \alpha + \beta_1 Ds + \beta_2 Dh + \beta_3 Acel + \beta_4 Acpw + \mu \] (1)

Where:

\(\beta \) = The Constant Parameter of the Equation

\(\beta_1 \) = Coefficient of the Independent Variable

\(Ds \) = Distance of Schools from household in kilometers (km)

\(Dh \) = Distance of Hospitals from household in kilometers (km)

\(Acel \) = Access to Electricity

\(Acpw \) = Access to Clean Pipe borne Water

\(\mu \) = Error Term
Table 3.1 Definition of Variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
<th>Measurement</th>
<th>Value Levels/Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlb</td>
<td>Child Labour</td>
<td>Count</td>
<td>Per Hour</td>
</tr>
<tr>
<td>Ds</td>
<td>Distance of Schools from Household in kilometers (KM)</td>
<td>Count</td>
<td>Per KM</td>
</tr>
<tr>
<td>Dh</td>
<td>Distance of Hospitals from Household in kilometers (KM)</td>
<td>Count</td>
<td>Per KM</td>
</tr>
<tr>
<td>Acel</td>
<td>Access to Electricity</td>
<td>Dummy</td>
<td>1 = Available, 0 = Unavailable</td>
</tr>
<tr>
<td>Acpw</td>
<td>Access to clean pipe</td>
<td>Dummy</td>
<td>1 = Available, 0 = Unavailable</td>
</tr>
</tbody>
</table>

4.0 Results and Discussion

The main objective of the study is to analyse the basic infrastructure affecting child labour in North-Eastern Nigeria. Based on this objective, data were generated through questionnaires administered to the specified respondents and were modeled to address the objectives. Tobit Model was used to find the environmental factors responsible for child labour in North-Eastern Nigeria. The data were analysed using Stata Version 14.0.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Children engage in work Coefficient Marginal</th>
<th>Children working 3Hrs &5Hrs Coefficient Marginal</th>
<th>Children working 5Hrs & Above Coefficient Marginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ds</td>
<td>0.0415*** (0.0087) 0.0041</td>
<td>0.0177 (0.0153) 0.0018</td>
<td>0.0229** (0.0100) 0.0025</td>
</tr>
<tr>
<td>Dh</td>
<td>-0.0046 (0.0416) -0.0004</td>
<td>-0.0187 (0.0615) -0.0019</td>
<td>-0.0147 (0.0441) -0.0016</td>
</tr>
<tr>
<td>Acel</td>
<td>-0.5916** (0.2802) -0.0596</td>
<td>-0.5966 (0.4114) -0.0616</td>
<td>-0.4960* (0.2982) -0.0550</td>
</tr>
<tr>
<td>Acpw</td>
<td>0.3982 (0.3639) 0.0390</td>
<td>0.6249 (0.5141) 0.0669</td>
<td>-0.1626 (0.4058) -0.0180</td>
</tr>
<tr>
<td>N</td>
<td>810 (356)</td>
<td>356</td>
<td>454</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors are in parentheses, P values: significance *10%; **5%; ***1%.

The result in Table 4.1 distance of schools from households in kilometers, has a significant positive effect on children engaging in work, (that is, the Prob. (t-statistic) value is less than 1 percent). The distance of schools
from households in kilometers has no significant effect on children working 3 to 5 hours per day (that is, the Prob. (t-statistic) value is greater than 10 percent). The distance of schools from households in kilometers has a significant positive effect on children working 5 hours or above per day (that is, the Prob. (t-statistic) value is less than 5 percent). The result shows that increasing the distance of schools from households in kilometers by a unit increases the probability of children engaging in work by 4.15 percent (marginal value = 0.0041) while holding other variables constant. On the contrary, increasing the distance of schools from households in kilometers by one unit has the potential to reduce the probability of children working 3 to 5 hours per day by 1.77 percent (marginal value = 0.0018), while holding other variables constant. Besides, increasing the distance of schools from households in kilometers by one unit increases the probability of children working 5 hours and above per day by 2.29 percent (marginal value = 0.0025), while other variables are held constant. The implication is that the further the school is from the child’s home, the more likely the child becomes discouraged from attending school, thereby engaging in child labour. This is the case in northern Nigeria, where schools are located some distances away from residential homes.

The distance of the hospitals from households in kilometers has significant effect on children engaging in work. The Children working 3 to 5 hours per day or children working 5 hours and above per day (t-statistic) value is greater than 10 percent in all three models. The result shows that an increase in the distance of hospitals from households in kilometers has the potential to reduce the probability of children engaging in work by 0.46 percent (marginal value = -0.0004) while other variables are held constant. Also, an increase in the distance of hospitals from households by a unit has the potential to reduce the probability of children working 3 to 5 hours per day by 1.87 percent (marginal value = -0.0019), while other variables are held constant. The increase in the distance of hospitals from households by a unit has the potential to reduce the probability of children working 5 hours and above per day by 1.47 percent (marginal value = -0.0016), while other variables are held constant. The implication is that the distance of hospitals from households in kilometers does not affect the probability of children working as child labourers or working fewer or more hours.

Access to electricity has a significant effect on children engaging in work (that is, the Prob. (t-statistic) value is less than 5 percent). Access to electricity has no significant effect on children working 3 to 5 hours per day (that is, the Prob. (t-statistic) value is less than 5 percent). On the contrary, access to electricity has no significant effect on children working 5 hours or above per day (that is, the prob. (t-statistic) value is greater than 10 percent). The result shows that increasing access to electricity by a unit has the potential to reduce the probability of children engaging in work by 59.16 percent (marginal value = 0.0596). Other variables are held constant. On the contrary, increasing access to electricity by a unit has the potential to reduce the probability of children working 3 to 5 hours per day by 59.66 percent (marginal value = 0.0529), while other variables are held constant. While increasing access to electricity by a unit reduces the probability of children working 5 hours and above per day by 49.60 percent (marginal value = -0.0550), other variables are held constant. This implies that access to electricity has contributed to determining the probability of children engaging in child labour or working longer hours per day but not working lesser hours.

Access to clean pipe-borne water has significant effect on children engaging in work, children working 3 to 5 hours per day, or children working 5 hours and above per day (that is, the Prob. (t-statistic) value is greater than 5 percent in all three models). The result shows that increasing access to clean pipe-borne water has the potential to increase the probability of children engaging in work by 39.82 percent (marginal value = 0.0390), while other variables are held constant. Also, increasing access to clean pipe-borne water has the potential to increase the probability of children working 3 to 5 hours per day by 62.49 percent (marginal value = 0.0669), while other variables are held constant. While increasing access to clean pipe-borne water by one percent has the potential to reduce the probability of children working 5 hours or above per day by 16.26 percent (marginal value = -0.0180), while other variables are held constant. The implication is that access to clean pipe water has no significant contribution or effect in determining the probability of children engaging in child labour or working longer hours per day.

Model Specification Test
The model specification test is performed after the Tobit regression to check if specification error exists in the model and to avoid bias and inconsistency. From the result above, the predicted value (_hat) for the model is expected to be significant, while the predictor for rebuilding the model should be insignificant. This indicates that the model is correctly specified given the insignificant value of the predictors in Table 4.2.

5.0 Conclusion and Recommendation

The objective of this study is to determine how the basic infrastructures affect child labour in North-Eastern Nigeria. The variables here consist of access to electricity, access to clean pipe-borne water, distance to school, and distance to the hospital. The study used Tobit model to determine the factors that influence child labour in North-Eastern Nigeria. It is the finding of this study that access to electricity has no significant effect on children engaging in work. This implies that access to electricity has no significant contribution or effect on determining the probability of children engaging in child labour. This implies that access to clean pipe-borne water has significant effect on children engaging in work. This is as a result of children trekking a long distance to fetch water for their parents at the expenses of school time. Regarding the distance of the school from households in kilometers, it has a significant positive effect on children engaged in work. Based on the findings of this research, it is therefore recommended that the government should make adequate provisions for good roads that are closer to communities. This would save the children from trekking long distances before reaching schools from their homes. Also, hospitals should be built close to communities so that the children and households do not have to trek for a long distance before getting medical assistance when there is a need. Some local communities deserve appreciation as they mostly volunteer to construct new classrooms for students. The government, in this case, should acknowledge their effort and assist those communities because their actions show their interest in the education of their wards. If the government should support them, it will also encourage other neighbouring communities to emulate them. The introduction of the free education program is a step forward, but it eventually affects the way and manner in which schools are managed due to the absence of internally generated revenue (IGR). Therefore, the government should replace the abolished schools' IGR with a monthly allocation to schools, which might make it possible for them to execute some basic projects without necessarily waiting for the State Universal Basic Education Board (SUBEB).

Competing Interest: Authors declare no competing interest

REFERENCES

